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A kinetic description of heat transfer to a spherical particle from a plasma 
with allowance for charge-transfer processes is given in the monoenergetic ion 
approximation. 

The kinetic description of the interaction of a material particle with a rarefied 
plasma, allowing for the participation of both neutral molecules and charges - electrons 
and ions - in the transfer processes and for electrization of the particle, comes down to 
a simultaneous solution of the Boltzmann-Vlasov equations for the velocity distribution func- 
tions and the Poisson equation for the electrostatic potential. These equations are analyzed 
togethe[ with the condition of equality of the fluxes of electrons and ions colliding with 
the particle, which determines the equilibrium (floating) potential of the particle, q! < 0, 
acquired by it in the plasma due to the considerable difference between the thermal veloci- 
ties of the charge carriers [Ve/V i - (miTe=/meTi=) I/z >> i]. The main complexities in solv- 
ing the kinetic problem are associated with calculating the macroscopic characteristics (den- 
sities, charge fluxes, etc.) of the ions, since the effective potential of their interaction 
with the charged particle has a complicated form [i, 2]. Simplifying model distributions - 
the cold ion [3] and monoenergetic ion [4] approximations - have therefore become widely popu- 
lar. Heat transfer between a spherical particle and a rarefied plasma in the cold ion ap- 
proximation has been described in [5]. 

In the present paper we give the results of calculations of heat transfer to a spherical 
particle of radius R, at rest in a rarefied collisionless (R << s plasma, under the assump- 
tion of a monoenergetic ion velocity distribution. 

The formulation and an algorithm for numerical solution of the problem of the potential 
distribution of plasma in the vicinity of a charged particle have been given in [5]. The 
equations in [5] for the density and the charge and energy fluxes of the electrons, which 
have a Maxwellian velocity distribution in the unperturbed part of the plasma far from the 
particle, also remain valid. For ions with a monoenergetic distribution function 
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Fig. i. Spatial distributions of potential y/yf (a) and of 
densities nj of charge carriers (b) in the vicinity of the 
particle in a one-temperature (~ = i) argon plasma; the upper 
branches are curves of density n i and the lower branches are 
of density he; dashed lines: quasi-neutral solutions: i) x D = 
i, yj = 4.15; 2) 0.i and 4.51; 3) 0.01 and 5.02. 

The ion energy ~0 must be of the order of the ion temperature kTi~. Since the ion tem- 
perature is definitely not a part of the monoenergetic distribution function (i), the choice 
of the proportionality factor between these quantities is not unique. In the present paper 
we use the relationship ~0 = (4/~)kTi~ adopted in probe theory [I, 2], which makes the ion 
fluxes to an uncharged particle in the absence of an electric field calculated for Maxwellian 
and monoenergetic distributions coincide [i, 2]. In the limit �9 = Te~/Ti~ ~ ~, Eqs. (2)-(4) 
change into the corresponding equations [5] for the cold ion approximation. 

The dimensionless 0 . . . total heat fluxes qi = %/El, wlth allowance for the contrlbutlon to 
heat transfer from the energy of charge states of electrons (W e = ~e) and ions (W i = I i - ~e), 
for diffuse scattering of molecules and neutralized ions by the surface of the particle are 
calculated as 

q~ : I - - T ~ ,  (5 )  

1 (6)  

qi eT-i-j~(~ ) 
where wj = Wj/kTj~ and T s = Ts/Th~. 

The results of numerical calculations of the transfer of charge and energy to a particle 
in an argon plasma with T = Te~/Ti~ = I are given in Figs. i and 2. In Fig. i we show the 
influence of the ratio of the Debye radius r D = (kTe~/4~e2Ne=) I/2 to the particle's radius 
R on the spatial distributions of plasma potential and electron and ion densities.~ In Fig. 
2 we give the dependence on the Debye screening parameter x D = rD/R of the dimensionless 
particle potential yf = -e~f/kTe~ and the dimensionless fluxes of charge "~ = J~/J* and 
kinet$c energy e~ = ET/E* of electrons and ions [J~ = Ne~(kT~/2~m~)I/z, ~ Ne~kTe~(2kTe~ / 

1/2 J 4 . = ~. . 
~m i) ]. The bends in the curves (Fig. 2) correspond to the transltlon to the regime of 
orbital motion of ions [i, 2, 4] with weak Debye screening, when the electron and! ion fluxes 
depend only on the particle's potential ~f but not on the spatial distribution ~(r) of the 
plasma potential, and hence on x D = rD/R. 

In the limiting cases of a strongly and a weakly screening plasma, the particle's po- 
tential and the fluxes of charge and energy to it can be found analytically: 

ff = j:=e: = I/~ '12 e: = 2 (I + ~ ) ! 
' ~3/-----2 _ " ~ - ~ Y J .  ' Y f -  2 

In (~/z) 

f o r  s t r o n g  s c r e e n i n g  (x D << 1) and 

~ T  a /2  

( ~  exp( - -y f )  = (~/~)1/2 1 -t- -~-~Y! 

f o r  weak s c r e e n i n g  ( X D ~ l ) .  
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Fig. 2. Dimensionless floating potential of the par- 
ticle and dimensionless fluxes of electron and ion 
charge and energy for a one-temperature (~ = i) argon 
plasma as a function of the Debye screening parameter; 
dashed lines: limiting values in a strongly and a 
weakly screening plasma; i) yf; 2) Ji = Je = e$; 
3) ei. 

Fig. 3. Heat transfer to a metallic particle in a one- 
temperature argon plasma with T~= = 104 K at differ- 
ent pressures: p = 105 (I), i04J(2), 103 (3), and 102 
Pa (4); solid lines: Qt = Qa + Qe + Qi; dashed lines: 
Qa" Qj, W/m2; R, ~m. 

For the monoenergetic ion approximation in a one-temperature (T = i) argon plasma,~. 
these limiting values are yf = 5.60, e~ = i, and e i = 3.44 for x D << 1 and yf = 4.15, e~ = 
4.26, and e i = 11.56 for x D ~i. 

The role of plasma effects in heat transfer to metallic particles of different sizes 
is illustrated in Fig. 3, in which we give the results of calculations for a one-temperature 
argon plasma with Tj~ = 104 K at different pressures (p = 102-105 Pa). Under these condi- 
tions the plasma parameters vary within the following limits: degree of ionization q ~ 0.3- 
0.01; Debye radius r D = 0.6-0.09 ~m; mean free path gj > 4000-2 Dm. The contribution of the 
electron and ion fluxes, determined by the difference between the Qt = Qa + Qe + Qi and the 
Qa curves, is considerable in all cases, despite the fact that the degree of ionization may 
be fairly low. Plasma processes have the strongest influence on heat transfer to small par- 
ticles, the electric field of which is weakly screened by the plasma. 

The high efficiency of heat transfer to the particle from the plasma in comparison with 
a hot molecular gas is determined by the following factors: i) the participation of electrons 
and ions in transfer processes and electrization of the particle in the plasma; 2) penetra- 
tion into the plasma of the electric field of the charged particle, which affects the motion 
of electrons and ions; 3) the contribution of the energy of charged states of electrons and 
ions to heat transfer. 

NOTATION 

e, electron charge; energy; E~, flux density of kinetic energy; I i, ionization energy; 
J~, number flux density of plasma particles; k, Boltzmann constant; ~j, mean free path; mj, 
mass; Nj, calculated density; p, pressure; Qj, heat flux density; r, spatial coordinate; r D, 
Debye radius; R, particle's radius; Tj, temperature; v, average thermal velocity; 6(z), delta 
function; q, degree of ionization; 9, plasma potential; ~ , floating potential of the par- 
ticle; @e, electron work function. Indices: a, molecules; e, electrons; i, ions; h, heavy 
plasma particles (molecules and ions); s, surface; ~, unperturbed region of plasma far from 
the particle; -, direction toward the particle. 
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MUTUAL THERMAL EFFECT OF DEPOSITED PARTICLES ON THE STRENGTH 

OF A PLASMA COATING 

V. P. Bushlanov UDC 621.039.61 

An analytical expression is derived for the strength of a coating to resist separ- 
ation. The probability density of incidence of the deposited particles is given 
as a function of position on the basis of a known experimental dependence. 

Particles adhering to a substrate have roughly the shape of a disk of radius R and 
height h with R/h ~ i00 [i]. The adhesion strength E per unit base area of such a disk is 
greater the longer the solidification time t o of the disk and the higher the contact tempera- 
ture T K [i]. If the flow rate G (kg/sec) of the plasmatron is high, then some of the particles 
are not able to cool off prior to subsequent particles impinging onto them. Therefore, the 
cooling time of the deposited layer is increased, which leads to an increase in E. Below, 
we calculate E allowing for the mutual thermal influence of the deposited particles. 

Let the deposited coating consist of N disks of particles and their projection onto the 
substrate lie in the deposis spot S(x, y), where x and y are the coordinates on the sub- 
strate. For the convenience of further calculations, we shall introduce the auxiliary uni- 
tary functions E i and ~(N; Ak), i, k = i, 2, ..., N. Let 

1, i f  (x, y) C C~ (~, %), (1)  
Ei = 0, if (X, y) ~ C R (~z, ~), 

where $i, ni are coordinates on the substrate of the projection of the center of the disk 
CR(gi, hi) of radius R. 

Let 
K N 

r  &) = (1 - l e  ........ ~1) I-I Gj [] (1 - G s ) ,  (2)  
/=l S=k+l 

where eala2...a N is the Levi-Civita symbol, the absolute value of which is equal to unity if 
there are identical indices and zero if all indices are different, Ak = (el, a2 ..... ak), 
and a k is the number of disks. From Eqs. (i) and (2) it follows that ~(N; A k) equals unity 
only in the vicinity of the intersections of the projections of disks el, a2, ..., a k and 
equals zero over all the remaining regions S(x, y). 

As an example, Fig. 1 shows a picture of intersection of the projection of three disks 
in the deposition spot S(x, y) for N = 3. In this case, the following functions ~ are not 
identically zero: 

k = 1: ~(3; 1) = Ex(1 --'E~) (1 - -  E3); ~(3;  2) = (1 - -  E 0 E~(1--  Ez); 

r (3; 3) = (1 - -  Ex) (1 - -  E~) Es; 

k = 2 :  ~(3;  1, 2 ) = ~ ( 3 ;  2, I ) = E ~ E z ( 1 - - E 3 ) ;  ~(3;  1 , 3 ) =  

= ~ ( 3 ;  3, I ) = E I ( I - - E O E 3 ;  ~(3;  2, 3 ) = ~ ( 3 ;  3, 2) = ( 1 - -  E1)E~Ea; 
k = 3 :  ~(3; 1,2, 3 ) = ~ ( 3 ;  3,2, 1 ) = ~ ( 3 ;  2, 1 , 3 ) =  

=q~(3; 2, 3, 1 ) = ( b ( 3 ;  1,3, 2)=q5(3;  3, 1, 2 ) =  E~E~E~. 
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